Handwritten HW 4

Page 35

23. Mark the statement True or False (T/F). Justify your answer.

Another notation for the vector $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$ is $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$.

Solution:

25. Mark the statement True or False (T/F). Justify your answer. The points in the plane corresponding to $\begin{bmatrix} -2\\5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through

the origin.

Solution:

27. Mark the statement True or False (T/F). Justify your answer.

An example of a linear combination of vectors \mathbf{v}_1 and \mathbf{v}_2 is the vector $\frac{1}{2}\mathbf{v}_1$.

Solution:

29. Mark the statement True or False (T/F). Justify your answer.

The solution set of the linear system whose augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ is the same as the solution set of the equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.

Solution:

31. Mark the statement True or False (T/F). Justify your answer.

The set $Span\{u, v\}$ is always visualized as a plane through the origin.

Solution:

33. Let $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$. Denote the columns of A by

 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , and let $W = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

a. Is **b** in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$? How many vectors are in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$?

b. Is **b** in W? How many vectors are in W?

c. Show that \mathbf{a}_1 is in W. [Hint: Row operations are unnecessary.]

Solution: